Performance Issues
Diagnose and resolve common performance issues in DDEX Suite.
Common Performance Issues
Slow Parsing Performance
Symptoms: XML parsing takes longer than expected
Causes & Solutions:
- Large file size: Use streaming parser for files >10MB
- Complex XML structure: Enable streaming mode
- Memory pressure: Increase available memory or use memory-bounded parsing
// For large files, use streaming
const parser = new DDEXParser({
streaming: true,
maxMemoryUsage: 512 * 1024 * 1024 // 512MB limit
});
Memory Usage Issues
Symptoms: High memory consumption during processing
Solutions:
- Use streaming parser for large files
- Process files in batches
- Enable garbage collection
- Set memory limits
# Memory-efficient processing
from ddex_parser import DDEXParser
parser = DDEXParser()
parser.set_memory_limit(500 * 1024 * 1024) # 500MB limit
# Process in chunks
for chunk in parser.parse_streaming(large_xml_file):
process_chunk(chunk)
# Memory is released after each chunk
Build Performance Issues
Symptoms: DDEX XML generation is slow
Solutions:
- Use deterministic mode only when needed
- Batch similar operations
- Pre-validate data structure
- Use appropriate buffer sizes
Performance Monitoring
import time
import psutil
from contextlib import contextmanager
@contextmanager
def performance_monitor(operation_name):
"""Monitor performance of DDEX operations"""
start_time = time.time()
start_memory = psutil.Process().memory_info().rss
print(f"Starting {operation_name}...")
try:
yield
finally:
end_time = time.time()
end_memory = psutil.Process().memory_info().rss
duration = end_time - start_time
memory_used = (end_memory - start_memory) / 1024 / 1024 # MB
print(f"{operation_name} completed:")
print(f" Duration: {duration:.2f} seconds")
print(f" Memory used: {memory_used:.1f} MB")
# Usage
with performance_monitor("DDEX Parsing"):
result = parser.parse(xml_content)
Optimization Strategies
1. Batch Processing
// Process multiple files efficiently
const results = await parser.parseBatch(xmlFiles, {
concurrency: 4,
memoryLimit: 1024 * 1024 * 1024
});
2. Streaming for Large Files
# Stream large files to avoid memory issues
for chunk in parser.parse_streaming(large_file_path):
process_data_chunk(chunk)
3. Caching
// Cache parsed results
const cache = new Map();
function parseWithCache(xmlContent: string) {
const hash = calculateHash(xmlContent);
if (cache.has(hash)) {
return cache.get(hash);
}
const result = parser.parse(xmlContent);
cache.set(hash, result);
return result;
}
Best Practices
- Profile First: Use profiling tools to identify bottlenecks
- Stream Large Files: Use streaming for files >10MB
- Batch Operations: Process multiple files in batches
- Monitor Memory: Keep memory usage under control
- Use Caching: Cache frequently accessed data
- Optimize Data Structures: Use efficient data representations
- Parallel Processing: Use worker threads for CPU-intensive tasks