Skip to main content

Performance Issues

Diagnose and resolve common performance issues in DDEX Suite.

Common Performance Issues

Slow Parsing Performance

Symptoms: XML parsing takes longer than expected

Causes & Solutions:

  • Large file size: Use streaming parser for files >10MB
  • Complex XML structure: Enable streaming mode
  • Memory pressure: Increase available memory or use memory-bounded parsing
// For large files, use streaming
const parser = new DDEXParser({
streaming: true,
maxMemoryUsage: 512 * 1024 * 1024 // 512MB limit
});

Memory Usage Issues

Symptoms: High memory consumption during processing

Solutions:

  • Use streaming parser for large files
  • Process files in batches
  • Enable garbage collection
  • Set memory limits
# Memory-efficient processing
from ddex_parser import DDEXParser

parser = DDEXParser()
parser.set_memory_limit(500 * 1024 * 1024) # 500MB limit

# Process in chunks
for chunk in parser.parse_streaming(large_xml_file):
process_chunk(chunk)
# Memory is released after each chunk

Build Performance Issues

Symptoms: DDEX XML generation is slow

Solutions:

  • Use deterministic mode only when needed
  • Batch similar operations
  • Pre-validate data structure
  • Use appropriate buffer sizes

Performance Monitoring

import time
import psutil
from contextlib import contextmanager

@contextmanager
def performance_monitor(operation_name):
"""Monitor performance of DDEX operations"""

start_time = time.time()
start_memory = psutil.Process().memory_info().rss

print(f"Starting {operation_name}...")

try:
yield
finally:
end_time = time.time()
end_memory = psutil.Process().memory_info().rss

duration = end_time - start_time
memory_used = (end_memory - start_memory) / 1024 / 1024 # MB

print(f"{operation_name} completed:")
print(f" Duration: {duration:.2f} seconds")
print(f" Memory used: {memory_used:.1f} MB")

# Usage
with performance_monitor("DDEX Parsing"):
result = parser.parse(xml_content)

Optimization Strategies

1. Batch Processing

// Process multiple files efficiently
const results = await parser.parseBatch(xmlFiles, {
concurrency: 4,
memoryLimit: 1024 * 1024 * 1024
});

2. Streaming for Large Files

# Stream large files to avoid memory issues
for chunk in parser.parse_streaming(large_file_path):
process_data_chunk(chunk)

3. Caching

// Cache parsed results
const cache = new Map();

function parseWithCache(xmlContent: string) {
const hash = calculateHash(xmlContent);
if (cache.has(hash)) {
return cache.get(hash);
}

const result = parser.parse(xmlContent);
cache.set(hash, result);
return result;
}

Best Practices

  1. Profile First: Use profiling tools to identify bottlenecks
  2. Stream Large Files: Use streaming for files >10MB
  3. Batch Operations: Process multiple files in batches
  4. Monitor Memory: Keep memory usage under control
  5. Use Caching: Cache frequently accessed data
  6. Optimize Data Structures: Use efficient data representations
  7. Parallel Processing: Use worker threads for CPU-intensive tasks